首页> 外文OA文献 >Vertex sparsifiers : new results from old techniques
【2h】

Vertex sparsifiers : new results from old techniques

机译:顶点稀疏器:旧技术带来的新结果

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Given a capacitated graph $G = (V,E)$ and a set of terminals $K \subseteq V$, how should we produce a graph $H$ only on the terminals $K$ so that every (multicommodity) flow between the terminals in $G$ could be supported in $H$ with low congestion, and vice versa? (Such a graph $H$ is called a flow sparsifier for $G$.) What if we want $H$ to be a “simple” graph? What if we allow $H$ to be a convex combination of simple graphs? Improving on results of Moitra [Proceedings of the 50th IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA, 2009, pp. 3--12] and Leighton and Moitra [Proceedings of the 42nd ACM Symposium on Theory of Computing, ACM, New York, 2010, pp. 47--56], we give efficient algorithms for constructing (a) a flow sparsifier $H$ that maintains congestion up to a factor of $O(\frac{\log k}{\log \log k})$, where $k = |K|$; (b) a convex combination of trees over the terminals $K$ that maintains congestion up to a factor of $O(\log k)$; (c) for a planar graph $G$, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in $G$. Moreover, this result extends to minor-closed families of graphs. Our bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.
机译:给定一个容量图$ G =(V,E)$和一组终端$ K \ subseteq V $,我们应该如何仅在终端$ K $上生成一个图$ H $,以使之间的每个(多商品)流量$ G $中的终端可以在$ H $中得到支持,并且拥塞率低,反之亦然? (这样的图$ H $被称为$ G $的流量稀疏器。)如果我们希望$ H $成为“简单”图怎么办?如果我们允许$ H $是简单图的凸组合怎么办? Moitra [第50届IEEE计算机科学基础学术研讨会论文集,IEEE计算机学会,洛斯阿拉米托斯,加利福尼亚,2009年,第3--12页]和Leighton和Moitra [第42届ACM理论理论研讨会论文集]计算,ACM,纽约,2010年,第47--56页],我们给出了用于构造(a)流稀疏器$ H $的高效算法,该流稀疏器将拥塞维持到$ O(\ frac {\ log k} {\ log \ log k})$,其中$ k = | K | $; (b)在终端$ K $上树木的凸形组合,使拥塞维持到$ O(\ log k)$倍; (c)对于平面图$ G $,平面图的凸组合可将拥塞保持到一个恒定因子。这就要求我们给出一个新的算法来解决0扩展问题,第一个算法是将每个端子的原像连接在$ G $中。而且,该结果扩展到图的小封闭族。我们的边界立即暗示改进了针对某些基于端子的切割和订购问题的近似保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号